Multi-label Image Classification with A Probabilistic Label Enhancement Model

نویسندگان

  • Xin Li
  • Feipeng Zhao
  • Yuhong Guo
چکیده

In this paper, we present a novel probabilistic label enhancement model to tackle multi-label image classification problem. Recognizing multiple objects in images is a challenging problem due to label sparsity, appearance variations of the objects and occlusions. We propose to tackle these difficulties from a novel perspective by constructing auxiliary labels in the output space. Our idea is to exploit label combinations to enrich the label space and improve the label identification capacity in the original label space. In particular, we identify a set of informative label combination pairs by constructing a tree-structured graph in the label space using the maximum spanning tree algorithm, which naturally forms a conditional random field. We then use the produced label pairs as auxiliary new labels to augment the original labels and perform piecewise training under the framework of conditional random fields. In the test phase, max-product message passing is used to perform efficient inference on the tree graph, which integrates the augmented label pair classifiers and the standard individual binary classifiers for multi-label prediction. We evaluate the proposed approach on several image classification datasets. The experimental results demonstrate the superiority of our label enhancement model in terms of both prediction performance and running time comparing to the-stateof-the-art multi-label learning methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers

Multi-label classification allows a sample to belong to multiple classes simultaneously, which is often the case in real-world applications such as text categorization and image annotation. In multi-label scenarios, taking into account correlations among multiple labels can boost the classification accuracy. However, this makes classifier training more challenging because handling multiple labe...

متن کامل

Probabilistic Multi-Label Classification with Sparse Feature Learning

Multi-label classification is a critical problem in many areas of data analysis such as image labeling and text categorization. In this paper we propose a probabilistic multi-label classification model based on novel sparse feature learning. By employing an individual sparsity inducing l1-norm and a group sparsity inducing l2,1-norm, the proposed model has the capacity of capturing both label i...

متن کامل

Probabilistic Multi-Label Learning for Medical Data

We report on a probabilistic approach for the classification of chronically ill patients. We rely on multi-label learning for its ability to represent in a natural way classification problems involving coexistence of diseases. We use a public clinical database for the evaluation of our proposed algorithm. Preliminary results show the benefits of our approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014